サイト内検索

詳細
検索

ヘルプ

セーフサーチについて

性的・暴力的に過激な表現が含まれる作品の表示を調整できる機能です。
ご利用当初は「セーフサーチ」が「ON」に設定されており、性的・暴力的に過激な表現が含まれる作品の表示が制限されています。
全ての作品を表示するためには「OFF」にしてご覧ください。
※セーフサーチを「OFF」にすると、年齢認証ページで「はい」を選択した状態になります。
※セーフサーチを「OFF」から「ON」に戻すと、次ページの表示もしくはページ更新後に認証が入ります。

新規会員70%OFFクーポン

アプリで立ち読み

hontoアプリの確認

立ち読みには最新の「honto」アプリ(無料)が必要です。

バージョンの確認はアプリの「設定/情報」から確認できます。

最新の「honto」アプリをご利用の方

立ち読みする

最新の「honto」アプリをダウンロードされる方

hontoビューアアプリ

  • みんなの評価 5つ星のうち 未評価
  • あなたの評価 評価して"My本棚"に追加 評価ありがとうございます。×
  • 販売開始日: 2023/12/09
  • 出版社: 講談社
  • レーベル: KS情報科学専門書
  • ISBN:978-4-06-533763-9
一般書

Pythonでスラスラわかる ベイズ推論「超」入門

著者 赤石 雅典 , 須山 敦志

★数学とプログラミングを対比させながら、一歩一歩わかりやすく!実務に即してPyMC5プログラミングでベイズ推論を使いこなせるようになる。最初の一冊として、データサイエンテ...

もっと見る

Pythonでスラスラわかる ベイズ推論「超」入門

税込 3,080 28pt

ワンステップ購入とは ワンステップ購入とは

ほしい本に追加(値下がりすると通知がきます)

ご利用中のデバイスが対応しているかご確認ください

  • ブラウザ
  • iOS
  • Android
  • Win
  • Mac

対応デバイスごとのコンテンツタイプやファイルサイズヘルプ

オンライン書店e-honとは

e-hon

hontoは「オンライン書店e-hon」との連携を開始しました。
e-hon」は書籍、雑誌、CD、DVD、雑貨といった多岐に渡る商品を取り扱う総合オンライン書店です。130万点以上の取り扱い点数、100万点以上の在庫により、欲しい商品を買い逃しません。honto会員向けにお得なキャンペーンを定期的に実施しています(キャンペーンに参加するにはMy書店をhontoに設定して頂く必要があります)。
・まだe-honの会員ではない方
下記リンクからe-honへ遷移し会員登録する際に自動でhontoがMy書店に設定されます。
・既にe-honをご利用いただいている方
「マイページ」-「会員情報の変更」-「My書店の変更」に進み、検索窓に「honto」と入力し、検索結果画面で会員登録ボタンを押すことでMy書店がhontoに設定されます。

e-honで紙の本を探す

※外部サイトに移動します。

対応デバイス毎のコンテンツタイプやファイルサイズ

対応デバイス コンテンツタイプ ファイルサイズ
ブラウザ EPUB
iOS EPUB 64.8MB
Android EPUB 64.8MB
Win EPUB 64.8MB
Mac EPUB 64.8MB

予約購入とは

まだ販売されていない電子書籍の予約ができます。予約すると、販売開始日に自動的に決済されて本が読めます。

  • 商品は販売開始日にダウンロード可能となります。
  • 価格と販売開始日は変更となる可能性があります。
  • ポイント・クーポンはご利用いただけません。
  • 間違えて予約購入しても、予約一覧から簡単にキャンセルができます。
  • honto会員とクレジットカードの登録が必要です。未登録でも、ボタンを押せばスムーズにご案内します。

予約購入について詳しく見る

ワンステップ購入とは

ワンステップ購入とは、ボタンを1回押すだけでカートを通らずに電子書籍を購入できる機能です。

こんな方にオススメ

  • とにかくすぐ読みたい
  • 購入までの手間を省きたい
  • ポイント・クーポンはご利用いただけません。
  • 間違えて購入しても、完了ページもしくは購入履歴詳細から簡単にキャンセルができます。
  • 初めてのご利用でボタンを押すと会員登録(無料)をご案内します。購入する場合はクレジットカード登録までご案内します。

キャンセルについて詳しく見る

商品説明

★数学とプログラミングを対比させながら、一歩一歩わかりやすく!

実務に即してPyMC5プログラミングでベイズ推論を使いこなせるようになる。
最初の一冊として、データサイエンティストにおすすめ!

【サポートサイト】
https://github.com/makaishi2/python_bayes_intro

【主な内容】
第1章 確率分布を理解する
1.1 ベイズ推論における確率分布の必要性
1.2 確率変数と確率分布
1.3 離散分布と連続分布
1.4 PyMCによる確率モデル定義とサンプリング
1.5 サンプリング結果分析
1.6 確率分布とPyMCプログラミングの関係

第2章 よく利用される確率分布
2.1 ベルヌーイ分布(pm.Bernoulliクラス)
2.2 二項分布(pm.Binomial クラス)
2.3 正規分布(pm.Normal クラス)
2.4 一様分布(pm.Uniform クラス)
2.5 ベータ分布(pm.Beta クラス)
2.6 半正規分布(pm.HalfNormal クラス)

第3章 ベイズ推論とは
3.1 ベイズ推論利用の目的
3.2 問題設定
3.3 最尤推定による解法
3.4 ベイズ推論による解法
3.5 ベイズ推論の精度を上げる方法
3.6 ベイズ推論の活用例

第4章 はじめてのベイズ推論実習
4.1 問題設定 (再掲)
4.2 最尤推定
4.3 ベイズ推論 (確率モデル定義)
4.4 ベイズ推論 (サンプリング)
4.5 ベイズ推論 (結果分析)
4.6 ベイズ推論 (二項分布バージョン)
4.7 ベイズ推論 (試行回数を増やす)
4.8 ベイズ推論 (事前分布の変更)
4.9 ベータ分布で直接確率分布を求める

第5章 ベイズ推論プログラミング
5.1 データ分布のベイズ推論
5.2 線形回帰のベイズ推論
5.3 階層ベイズモデル
5.4 潜在変数モデル

第6章 ベイズ推論の業務活用事例
6.1 ABテストの効果検証
6.2 ベイズ回帰モデルによる効果検証
6.3 IRT (Item Response Theory)によるテスト結果評価

目次

  • 第1章 確率分布を理解する
  • 1.1 ベイズ推論における確率分布の必要性
  • 1.2 確率変数と確率分布
  • 1.3 離散分布と連続分布
  • 1.4 PyMCによる確率モデル定義とサンプリング
  • 1.5 サンプリング結果分析
  • 1.6 確率分布とPyMCプログラミングの関係
  • 第2章 よく利用される確率分布
  • 2.1 ベルヌーイ分布(pm.Bernoulliクラス)

あわせて読みたい本

この商品に興味のある人は、こんな商品にも興味があります。

前へ戻る

  • 対象はありません

次に進む

この著者・アーティストの他の商品

前へ戻る

  • 対象はありません

次に進む

小分け商品

前へ戻る

  • 対象はありません

次に進む

この商品の他ラインナップ

前へ戻る

  • 対象はありません

次に進む

みんなのレビュー0件

みんなの評価0.0

評価内訳

  • 星 5 (0件)
  • 星 4 (0件)
  • 星 3 (0件)
  • 星 2 (0件)
  • 星 1 (0件)

実施中のおすすめキャンペーン

本の通販連携サービス

このページの先頭へ

×

hontoからおトクな情報をお届けします!

割引きクーポンや人気の特集ページ、ほしい本の値下げ情報などをプッシュ通知でいち早くお届けします。