サイト内検索

詳細検索

ヘルプ

セーフサーチについて

性的・暴力的に過激な表現が含まれる作品の表示を調整できる機能です。
ご利用当初は「セーフサーチ」が「ON」に設定されており、性的・暴力的に過激な表現が含まれる作品の表示が制限されています。
全ての作品を表示するためには「OFF」にしてご覧ください。
※セーフサーチを「OFF」にすると、アダルト認証ページで「はい」を選択した状態になります。
※セーフサーチを「OFF」から「ON」に戻すと、次ページの表示もしくはページ更新後に認証が入ります。

ポイントUPキャンペーン  ~1/31

丸善・ジュンク堂書店×hontoブックツリー  よりよい人間関係のために ー学び直しと悩み解決のヒントー ~2/16

  1. hontoトップ
  2. 本の通販
  3. 自然科学・環境の通販
  4. 数学の通販
  5. 日本評論社の通販
  6. 加群からはじめる代数学入門 線形代数学から抽象代数学への通販

電子書籍化お知らせメール

商品が電子書籍化すると、メールでお知らせする機能です。
「メールを登録する」ボタンを押して登録完了です。
キャンセルをご希望の場合は、同じ場所から「メール登録を解除する」を押してください。

電子書籍化したら知らせてほしい

  • みんなの評価 5つ星のうち 5 1件
  • あなたの評価 評価して"My本棚"に追加 評価ありがとうございます。×
  • カテゴリ:大学生・院生
  • 発売日:2021/06/03
  • 出版社: 日本評論社
  • サイズ:21cm/186p
  • 利用対象:大学生・院生
  • ISBN:978-4-535-78939-5
専門書

紙の本

加群からはじめる代数学入門 線形代数学から抽象代数学へ

著者 有木 進 (著)

数学科の学生を対象にした、線形代数学と本格的な代数学を補間する「抽象代数学」の入門書。環上の加群を中心に、体→環→群の順に導入する流れで学びながら、抽象的な代数学の考え方...

もっと見る

加群からはじめる代数学入門 線形代数学から抽象代数学へ

税込 2,420 22pt

予約購入とは

まだ販売されていない電子書籍の予約ができます。予約すると、販売開始日に自動的に決済されて本が読めます。

  • 商品は販売開始日にダウンロード可能となります。
  • 価格と販売開始日は変更となる可能性があります。
  • ポイント・クーポンはご利用いただけません。
  • 間違えて予約購入しても、予約一覧から簡単にキャンセルができます。
  • honto会員とクレジットカードの登録が必要です。未登録でも、ボタンを押せばスムーズにご案内します。

予約購入について詳しく見る

ワンステップ購入とは

ワンステップ購入とは、ボタンを1回押すだけでカートを通らずに電子書籍を購入できる機能です。

こんな方にオススメ

  • とにかくすぐ読みたい
  • 購入までの手間を省きたい
  • ポイント・クーポンはご利用いただけません。
  • 間違えて購入しても、完了ページもしくは購入履歴詳細から簡単にキャンセルができます。
  • 初めてのご利用でボタンを押すと会員登録(無料)をご案内します。購入する場合はクレジットカード登録までご案内します。

キャンセルについて詳しく見る

あわせて読みたい本

この商品に興味のある人は、こんな商品にも興味があります。

前へ戻る

  • 対象はありません

次に進む

このセットに含まれる商品

前へ戻る

  • 対象はありません

次に進む

商品説明

数学科の学生を対象にした、線形代数学と本格的な代数学を補間する「抽象代数学」の入門書。環上の加群を中心に、体→環→群の順に導入する流れで学びながら、抽象的な代数学の考え方が身につく。章末問題も収録。【「TRC MARC」の商品解説】

抽象的な代数学への第一歩を、まず体上の線形空間を導入した上で線形空間の概念を環上の加群へ一般化するという、体→環→群の順に導入する流れで学んでいく。具体的な目次立ては以下の通り。

第1章 体上の加群(別名:線形空間または
ベクトル空間)
第2章 一変数多項式環上の加群
第3章 環上の加群
第4章 有理整数環
第5章 一変数多項式環上の加群の計算理論
第6章 加群理論の応用
第7章 可換群から非可換群へ

第1章では体係数の線形空間を導入し短完全系列を用いて種々の次元公式を導く。第2章では行列の固有値の理論を一変数多項式環上の加群の理論として見直す。第3章では体の公理から除法の公理を削って可換環の公理を、乗法の交換法則を削って環の公理を導入し、次に群の公理を導入して加群と環上の加群を定義する。第4章では高校で学ぶ整数の性質の厳密な取り扱いを説明し、Smith標準形を与える。第5章では一変数多項式環に対し第4章と並行した性質が成り立つことを説明し、有限階自由加群のあいだの準同型の核と余核の計算方法を説明する。第6章では有限生成Abel群の構造定理、Jordan標準形・Cayley-Hamiltonの定理・Sylvester方程式の加群を用いた取り扱いを説明する。また有限Abel群の部分群を求める計算方法を説明する。ここまでは(環の作用をもつ)加法群しか出てこないが、第7章では非可換群の正規部分群による商や群作用を導入する。
全編に渡り豊富な例が与えられ、つねに計算方法が提示される。また、他書に見られない広い視野から多くの事実が註として付記されており、代数学の数学の諸分野へのつながりがわかるとともに線形代数の見方が一変するであろう。
章末問題や計算問題も豊富で、手を動かしながら概念を身につけたい人や代数学を学び直したい人への独習書としても最適の一冊。【商品解説】

目次

  • 第1章 体上の加群(別名:線形空間またはベクトル空間)
    • 1.1 実線形空間
    • 1.2 体上の線形空間
    • 1.3 基底
    • 1.4 行列と部分空間の表示
    • 1.5 線形写像
    • 1.6 商空間
    • 1.7 線形空間の短完全系列
    • 章末問題
  • 第2章 一変数多項式環上の加群

著者紹介

有木 進

略歴
〈有木進〉1959年下関市生まれ。理学博士(東京大学)。大阪大学大学院情報科学研究科教授。著書に「工学がわかる線形代数」など。

関連キーワード

この著者・アーティストの他の商品

前へ戻る

  • 対象はありません

次に進む

みんなのレビュー1件

みんなの評価5.0

評価内訳

  • 星 5 (1件)
  • 星 4 (0件)
  • 星 3 (0件)
  • 星 2 (0件)
  • 星 1 (0件)

2021/11/04 08:05

投稿元:ブクログ

レビューを見る

×

hontoからおトクな情報をお届けします!

割引きクーポンや人気の特集ページ、ほしい本の値下げ情報などをプッシュ通知でいち早くお届けします。