目次
-
■本書の主な内容
■1章 演習に入るまえの予備知識
1 序論・自然言語処理と機械学習
2 本書の執筆・開発環境
3 機械学習のためのPythonの基礎
4 数値計算ライブラリNumPy
5 本書で利用するその他の主要ライブラリ
■2章 基礎を押さえる7ステップ
Step 01 対話エージェントを作ってみる
Step 02 前処理
Step 03 形態素解析とわかち書き
Step 04 特徴抽出
Step 05 特徴量変換
Step 06 識別器
Step 07 評価
■3章 ニューラルネットワークの6ステップ
Step 08 ニューラルネットワーク入門
Step 09 ニューラルネットワークによる識別器
Step 10 ニューラルネットワークの詳細と改善
Step 11 Word Embeddings
Step 12 Convolutional Neural Networks
Step 13 Recurrent Neural Networks
■4章 2ステップの実践知識
Step 14 ハイパーパラメータ探索
Step 15 データ収集
プログラミング言語 ランキング
前へ戻る
-
1位
-
2位
-
3位
-
4位
-
5位
-
6位
-
7位
-
8位
-
9位
-
10位
次に進む