- 販売開始日: 2019/07/04
- 出版社: 裳華房
- ISBN:978-4-7853-1091-2
曲線と曲面の微分幾何(改訂版)
著者 小林昭七
※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。G...
曲線と曲面の微分幾何(改訂版)
ワンステップ購入とは ワンステップ購入とは
商品説明
※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。
Gauss-Bonnetの定理のように、美しく深みのある幾何を理解してもらうために、微積分の初歩と2次3次の行列を知っていれば容易に読み進めるように解説。
1995年の改訂では、「極小曲面」の章を新設し、第2章にでてくる例を詳しく調べることに重点をおき、図の改良にも工夫をした。
目次
- 1.平面上の曲線,空間内の曲線
- 2.空間内の曲面の小域的理論
- 3.曲面上の幾何
- 4.Gauss‐Bonnetの定理
- 5.極小曲面
関連キーワード
あわせて読みたい本
前へ戻る
- 対象はありません
次に進む
この著者・アーティストの他の商品
前へ戻る
- 対象はありません
次に進む
小分け商品
前へ戻る
- 対象はありません
次に進む
この商品の他ラインナップ
前へ戻る
- 対象はありません
次に進む
現代幾何学への入門書
2020/01/28 04:53
4人中、2人の方がこのレビューが役に立ったと投票しています。
投稿者:類太郎 - この投稿者のレビュー一覧を見る
現代幾何学を何も知らなければ, まず本書か
「数学ガール ポアンカレ予想」
「多様体の基礎」
を読んでみるとよい. どちらも位相空間論の知識は仮定していない.
本書は厚くはなく厳密性より初等的なわかりやすさを重視している. なので曲線論や曲面論や多様体の知識が必要な方なら数学徒ではなくとも読めると思う. 現代幾何学のあらゆる考え方や概念((偏)微分方程式との関連・測地線・微分形式・リーマン計量・ベクトル場・共変微分・多様体・幾何学的不変量など)が初等的に書かれている.
多様体の線型接続については本書の共変微分と測地線の節が理解の参考になる. 特に本書の問にあるベクトル場の共変微分の公式と測地線の方程式の変形版を知っておくと情報の消化が早まる.
最初は細部の計算過程や必要最小限以外の具体例や問あるいは証明は適宜飛ばして論理展開をつかむ読み方だと理解しやすい.
私は本書で初めてフルネ-セレの公式の本質や基本形式やリーマン計量の本質がわかった.
また, 本文を読んでいて気づいたが, 曲面p(u, v)上の曲線p(s)の法曲率(κ_n)(s)とリーマン計量(ds)^2と第二基本形式の間に
(κ_n)(s)(ds)^2=L(du)^2+2Mdudv+N(dv)^2
の関係がある. ゆえに曲面p(u, v)上の曲線p(s)の法曲率(κ_n)(s)を考えるには各点p(u(s), v(s))における単位法ベクトルe=((p_u)×(p_v))/|(p_u)×(p_v)|が必要不可欠なことがわかる.
xyz-座標空間において方程式
z=αx^2+βy^2
がαβ>0のとき楕円放物面, αβ<0のとき双曲放物面, αβ=0のとき放物柱面またはxy-座標平面を表すことは知っておくと理解がしやすい.「改訂新版 ベクトル解析からの幾何学入門」を先に読んでいると全体的に理解が早く深くなる.
三角形の内角の和がπであることや四角形の内角の和が2πであることを含むガウス-ボネの定理にも詳しく, 興味深い.
予備知識は微分積分(重積分まで)と簡単な線型代数(行列・数ベクトル空間・固有値など)で充分であるがコーシー-リーマン方程式までの複素解析も知っていると, さらなる広がりもわかる. ただガウス曲率と平均曲率の二つの定義が一致することの証明では2×2(正則)行列P, Qに対し
det(PQ)=det(QP)
det(P^(−1))=(det(P))^(−1)
tr(PQ)=tr(QP)
が成り立つという地味な命題が使われている. 直線は半径が無限大の円とみなせることも知っておくと曲率の理解が深まる. 常微分方程式の初期値問題の解の存在と一意性(例えばコーシー-リプシッツの定理)について知っているとなお良い.
ちなみに本文に「使って便利で正しい結果が出てくる概念, 記号, 式などは当初曖昧な点があっても, 後できちんと定式化されるということは数学の歴史が示している」とある. 典型的な例が微分形式と超関数である. 超関数はカレントという概念に拡張され複素幾何で用いられている. そして超関数の厳密な定義は
「新訂版 数理解析学概論」
が参考になる.
幾何学が数学徒だけの物ではなくなった現代において本書は幾何学の入門書としてますます価値が高まりそうである. 誤植は殆んどない.