確率論と統計学の妙味
2025/04/07 21:49
2人中、2人の方がこのレビューが役に立ったと投票しています。
投稿者:岩波文庫愛好家 - この投稿者のレビュー一覧を見る
書題にある、レジの順番待ちを始めとして、身近なネタを事例に確率論と統計学について述べられた一書です。
本書では結構計算式が出てきます(但し、それほど複雑な内容ではありません)。計算式自体は複雑ではありませんが、考え方についてはちょっと取っ付きにくいと思います。
ポイントとしては、数字は嘘をつかないし、また、数字に騙されるな、という事です。つまり、数字の錯覚に陥らない様に、そして判断を見誤らない様にすれば良い、という事です。
投稿元:
レビューを見る
本のタイトルにもあるとおり、はじめて統計学を知る人向けの内容。いろんなシチュエーションでの計算式を載せているが、本を読んで知りたいのはそういうことではないんだよな〜って印象。数学や公務員試験の数的処理が得意な人にとっては目新しいものではない。
投稿元:
レビューを見る
統計の大まかな考え方や実際の社会での使われ方とその価値について、噛み砕いた表現によって数学が苦手な人でもわかりやすく説明されている。疑似相関やナイチンゲールなどの統計学における有名なエピソードを押さえつつ、心理学や行動経済学への言及もあり、題材としてもよくまとまっている。
統計の基礎知識のさらに概要や輪郭について理解するのに役に立つ。一方で本書だけで実践がすぐにできるようになるわけではないため、具体的な課題を持っている場合はここからさらに知識の習得や実用的なスキルを求めると良いだろう。
1章の途中の28ページから3章最後の64ページまで、ギャンブルの仕組みについて丁寧に説明されており、本当に統計学の本なのかと疑ってしまうほどである点はおもしろい。
投稿元:
レビューを見る
日常に潜む「統計学」を知ることができる。
統計学を知ることで自分の頭で物事を判断できるようになり、騙されなくなる。
他人の言うことに左右されず、自分の力で生きていきたいなら、読んでおいて損はない。
一流のギャンブラーは、ギャンブルをしない。そもそも勝てない土俵や五分五分の土俵では戦わず、勝てる土俵だけで勝負する。
錯誤相関
数字は嘘をつかないが、人間は嘘をつく。
嘘をつく人間は数字を使う。
数字を使った嘘は、迷信と同じようなもの。
偶然によって、全く関係のない二つの事柄を結びつけてしまう。現象が特異であればあるほど、より強く印象に残る。
損失回避バイアス
「得をしたい」気持ちよりも、「損をしたくない」気持ちの方が大きい。この事実は知っておくことで、武器にも盾にもなる。
投稿元:
レビューを見る
はっきり言って二番煎じ。
この内容ならおれでもかける(他の本見ながら)。
他にたくさん良い本があります。
投稿元:
レビューを見る
日常を題材に、統計学を分かりやすく学べる本。
統計学の応用は、頻発する出来事のほうが効果が高い。そのため読みやすいのだろう。
私は、統計学から汲み取れる結果や概念を知りたかったので、計算のページやギャンブルの詳細などは流し見してしまった。
▼宝くじについて…
還元率は40%。多いと感じるのは「高額当選者の金額=外れ値」が入っているから。
平均年収値でもこれが当てはまる。年収は中央値で出すべき。
当選が出やすい店は、購入者が多ければ必然と当選者も多くなるから。当たりやすい売り場などない。
▼数字の嘘…
数字自体は嘘をつかない。しかし人は嘘をつく。
統計トリックに騙されないこと。
出てくる事象に相関関係はあるか?変数が隠れていないかを見抜くこと。
▼プロスペクト理論
もらえる時は確実な選択肢を選ぶが、失う時はリスクを取る。損失回避バイアスが働いている。
お得ですよ?よりも、損しますよ?が効果有り。
▼ギャンブル
胴元が勝つように出来ている。
投稿元:
レビューを見る
いやぁ、おもしろかったぁ。
確率•統計の読みもので、こんなに読みやすい本はないんじゃないかな。
ベイズは超わかりやすかった。ベイズはふーんくらいの興味だったけど、やってみようと思えたもんね。
なんというか、ビジネスマンの日々の立ち位置にスッと入って来ていただいている感じ。
難解な数字だらけの本も時には必要だけど、これはいい。感謝したい。
投稿元:
レビューを見る
人は経験則から予想をする。でもって、それを自分の中でルール化する。数が増えれば、それもだいたいが正しい確率に収束するのだろう。でもって、統計学と言うのは、そういう日常のMy ルールにも当てはめれる。そう言う考え方で見るとどう見れるか。そう言う多面的視点はいつも持っていたい。はじめての統計学と言う切り口として、レジの行列は確かに良い題材かと思う。
投稿元:
レビューを見る
確立や統計がわかると世の中の仕組みがよく見えてくる。
著者は数学が苦手だったが社会人になってから勉強をして確率・統計学をつかいこなせるようになったとのこと。
私も数学は苦手なのですが身につけたら絶対面白そうだなあと思う学問ですね。
投稿元:
レビューを見る
身近な疑問から入って統計学を用いて解説するというアプローチが読みやすさの秘訣。感染症検査の確率はタイムリーで唸った。ベイズ統計学は普段の仕事でもつかえそうだ。
投稿元:
レビューを見る
興味がある分野。
計算式など難しく考えるのができない為、
理屈だけ拝借。
やっぱりtotoはやめとこうかな。
色々勉強にはなりました。
投稿元:
レビューを見る
仕事できる人とできない人の違い→行動を言語化しているかどうか
何してるの?何のために?→仕事の目的、各タスクの所要時間、工数を把握
物事を分かりやすく人に説明できる
自分の意見を的確に伝えられる
経験や勘ではなく、エビデンスに基づいた主張ができる
じゃけん→人は警戒心を持つと拳を握る傾向有り・チョキは作りにくい→☆パーを出す事!!
国税庁の民間給与実態調査 平均年収441万円(平均値) 350万円(中央値)
男気じゃんけん 刑法185条ただし書き 一時の娯楽に供するものはOK
ギャンブル還元率ランキング
①カジノ90~97% ②パチンコ85~90% 競輪・競艇 競馬 オートレース スポーツくじ 宝くじ40~45%
プレーヤーの選択肢が多いものほど還元率が高い
並ぶレジ ①待っている人数、②待っている人のカゴの中身、③レジ係の手際の良さ→
③を重視すること→処理量が2倍になると待ち時間は半分よりかなり減少する
警官の多い地域は犯罪件数が多い?→相関関係にあるからと言って因果関係になっているとは限らない
ロナルド・A・フィッシャー(1890~1962)
紅茶→ミルクorミルク→紅茶の味に違いはあるか?
ミルク先の方がミルクのタンパク変性が少なく美味しい
ベイズ統計法→答えは分からないが、いったん仮に決めて、データを入れながらその都度修正する手法
迷惑メールのフォルダ、予測変換…☆過去からの学習機能の事か?
人物X 嘘つきor正直者 確率50%ずつ→事前確率
嘘つきは、本当の事を言う0.2 ウソを言う0.8
正直者は、本当の事を言う0.9 ウソを言う0.1
→ベルズ更新を行い、嘘つき:正直者=8/9:1/9
人物Xがウソを言った→嘘つきである確率は8/9に変化した
雨乞いすると雨が降る→錯誤相関
宝くじを冷蔵庫保管で当たるを証明するには?
→何が事象に影響を及ぼしたのかを考えなければならない
冷蔵庫/非冷蔵庫×当選/ハズレのマトリックスで検証が必要
→人間は、冷蔵庫・当選のみが記憶に強く残るため2つを錯誤相関する
P155他人の錯誤相関を訂正するには大変な労力が必要になるという事は肝に銘じておきましょう☆奥さんが何かにハマった時、どうすれば良いか要検討
パワーストーン、占い師も錯誤相関
自分がコントロールできない事にお金、時間、労力を費やすのは合理的ではない
×占いは統計学
〇占い師のアドバイスによってそちらに導かれている状態→そうなるような記憶のきっかけを作っている
プラシーボ効果 自己効力感☆placebo偽薬 pləsíːboʊ
企業では自己効力感の高さを採用基準にする事もある→過去の成功体験は?
キンコン西野「失敗はデータが取れない事である」→失敗してもOK
人間の致命的な弱点→未来予測が苦手 プロジェクション(投影)バイアス→今の状態が将来もずっと続くとの思い込み
プロスペクト理論→貰える時は確実な方、失う時はリスクがある方を選択する。損失回��バイアス(人は得をする事よりも損をしない事を優先する)
お得感は、金額の絶対値ではなく参照価格からの変化率
住宅・車の購入時には5万気にせず・スーパーで100円引き弁当を気にする
日立のAIの出した戦略→スタッフをある場所に立たせる→売上アップ
→マーケティングの専門家の戦略→ポップ広告…→効果なし☆今までの感、人間の感覚など当てにしない事!ポップなんて自己満のため!
購買意向調査 買いたいとa思う b少し思う c d eあまり思わない→実際の購買行動とは一致せず
1970年代ニューコーク事件、マックのヘルシーバーガー…失敗商品
Q自分が買いたいか?→Q他者からの人気はどのくらいでそうか?
人は言っている事とやっている事は違う
投稿元:
レビューを見る
目的
とりあえず統計学ってよくわからないから読んでみよ
感想
わたしはあんまり興味がないジャンルかもしれない。
ギャンブルとかレジとか、身近なネタで説明はあったがあんまり内容が入ってこなかった。
おそらく統計学と自分とのつながりが見えなかったから。こういうことを解決したい!という具体的な問題があったときに、統計学の考え方を使えるのかもね。
投稿元:
レビューを見る
どこかで読んだような内容だが、統計学の入門には良いかも。
このデータ社会でAIだのビッグデータだの叫ばれていますが、それをちゃんと理解している人はほとんどいないんじゃないでしょうか。
別にそれらを駆使して仕事に活かせとは言いませんが、「それらがなぜ使われているのか」、「どのように使われているのか」、「それに対して気をつけることは何か」ぐらいは一般教養として知っておかないといけない時代かもしれませんね。
今や小学生から携帯を持ち、沢山の情報に晒されて、自分で取捨選択をしなければなりません。
本の中でも書いていましたが、「数字はウソをつかないが、人間はウソをつく」。
このことを知らずに社会に出るといつのまにか損をしているかもしれません。
内容も読みやすいので、中高生ぐらいでもサッと読めると思います。
投稿元:
レビューを見る
じゃんけんの出す手の確率などの統計学。
考えればわかることだが、その時正しい判断が出来ているかと言うと、出来ておらず、しかも気がついてない事が多そう。
情報や表現を鵜呑みにせず損をしない様に。